

Mehrkanaliges synchrones PXI-CAN- und Analog-I/O-Testsysten

Peter Schwarz/Andreas Gemünd
A.M.S. Software GmbH/Johnson Controls – SAFT GmbH
ps@amssoft.de/andreas.gemuend@jci.com

- Vorstellung
- Anforderung
- Umsetzung
- Anwendung
- Ausblick

- Vorstellung
- Umsetzung
- Anwendung
- Ausblick

- Projektpartner
- Johnson Controls SAFT
- A.M.S. Software

Projektpartner

Johnson Controls SAFT
Advanced Power Solutions GmbH
Standort Hannover

Andreas Gemünd

Projektbetreuung Software-&System

Arkadius Klimas

Projektbetreuung Elektronik

A.M.S. Software GmbH Quickborn

Peter Schwarz

Projektleitung

Nils Rosenburg

Software-Entwicklung mit LabVIEW

Johnson Controls - SAFT

Global Capabilities

- Product Planning
- Benchmarking
- Consumer Research
- Design Studio
- Advanced Engineering

- Project Management
- Quality Systems
- Purchasing
- Product Development
- Prototype Shop

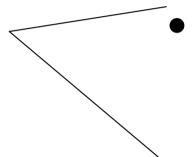
- Chemical Labs
- Testing
- Production Process/Prove Out
- Manufacturing
- Johnson Controls ist ein vor allem im Automotive- Bereich weltweit führendes Unternehmen, dessen Technologien – hauptsächlich Elektronik – in mehr als 200 Millionen Fahrzeugen verbaut sind.
- Die französische Firma Saft ist Spezialist für die Entwicklung und Produktion von High-Tech-Batterien.
- ca. 140.000/3.800 Mitarbeiter weltweit

A.M.S. Software GmbH

- Die A.M.S. Software GmbH ist seit 1995 am Standort Quickborn bei Hamburg tätig im Prüf-, Test- und Automatisierungsbereich.
- Kundenspezifische Software- und Systemlösungen
- Schwerpunkte in den industriellen Bereichen: Automotive, Luftfahrt, Halbleiter-Sensoren, Chemie/Kosmetik, Maschinenbau und Bahnfernwirktechnik
- NI-Alliance Member seit 14 Jahren

• Weitere Informationen zu A.M.S. finden Sie unter:

www.ams-soft.de



- Vorstellung
- Anforderung
- Umsetzung
- Anwendung
- Ausblick

Anforderung

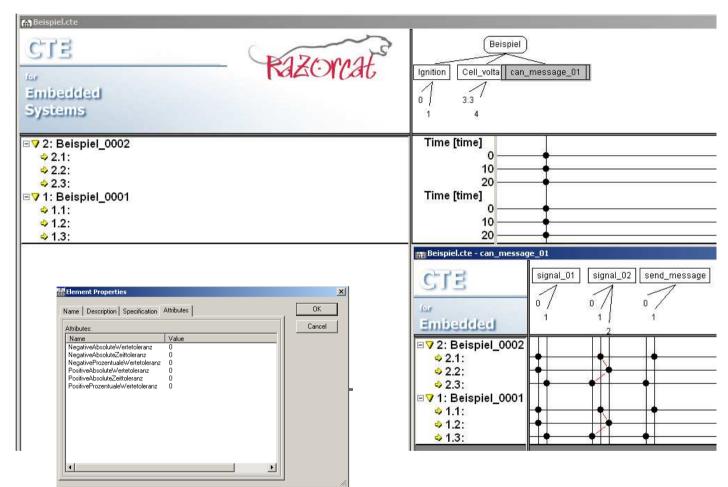
- Hardware
- Software

Anforderung – Hardware

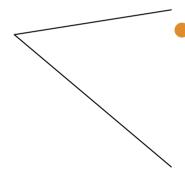
- Ansteuerung und Aufzeichnung von CAN-Bussen
- Ansteuerung und Aufzeichnung analoger I/O
- Ansteuerung und Aufzeichnung digitaler I/O
- Minimierung projektspezifischer Anpassung
- Reale Hardware anschließbar

Anforderung – Software(1)

- Synchrone Ausführung (CAN und I/O) & Logging
- Manuelle und automatisierte Ausführung
- Wandlung DBC $\leftarrow \rightarrow$ CTE $\leftarrow \rightarrow$ CSV $\leftarrow \rightarrow$ TDMS



Anforderung – Software(2)



- Vorstellung
- Anforderung
- Umsetzung
- Anwendung
- Ausblick

Umsetzung

- Hardware
- Software

Umsetzung - Hardware

Chassis

■ NI PXI-1042Q Chassis

Controller

PXI 8106 Core 2 Duo

1/0

- PXI 6723 DAQ card(32 analog out) 2 Stück
- PXI 4204 DAQ card(8 analog in)
- PXI SCB-68(connector blocks) 4 Stück

CAN

PXI 8464 CAN Series 2 card(2 busses)



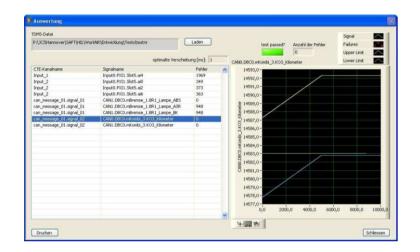
Umsetzung – Software(1)

Manuelle Bedienung

- -Setzen aller Outputs
- -Darstellung der Inputs
- -Aufzeichnung der Bedienungen, um sie wiederholen zu können

Umsetzung – Software(2)

- Automatisierter Testablauf (CTE-Datei)
- Generierung von Ausgabedaten in Blöcken
- Synchroner Start aller Ein- und Ausgabekanäle
- Monitoring der Werte während des Testlaufs
- Aufzeichnung der Werte in TDMS-Datei

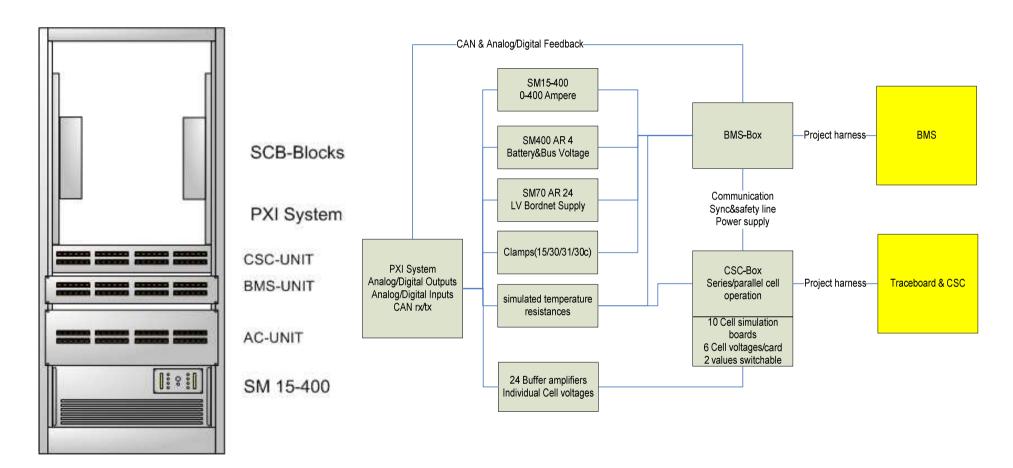


Umsetzung – Software(3)

- AutomatisierteAuswertung
- Vergleich mit Sollwerten
- Verschiebung berechnen
- Grafische Darstellung einzelner Kanäle
- Druckfunktion

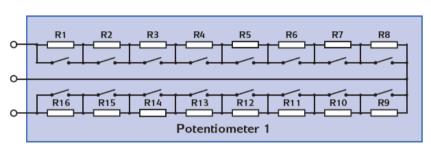
Johnson Controls	Auswertung	TDMS-Detel: tester
optimalte Verschiebung [ms]: 1 Tabelle der Kanäle	**-	
CTE-Kanainamen	Sorairamen	Fehler
	Input0.PXII.Slot5.ai4	107
Input_1	uiputu.rx11.30c3.am	177
Input_1 Input_2	Input0.PX11.Skot5.ar0	35
		35 35
Input_2	Input0.PX11.Slot5.ai0	35 35 35 35
Input_2 Input_2	Input0.PXI1.Skit5.ai0 Input0.PXI1.Skit5.ai2	35 35 35 484
Input_2 Input_2 Input_2	Input0 PXII Slot5 ai0 Input0 PXII Slot5 ai2 Input0 PXII Slot5 ai6	653
Input_2 Input_2 Input_2 can_message_01.signal_01	Input0.PXII.Slot5.a0 Input0.PXII.Slot5.a0 Input0.PXII.Slot5.a6 Input0.PXII.Slot5.a6 CANI.DBC0.mBremse_1.BRI_Lampe_ABS	197 35 35 35 484 653
Input_2 Input_2 Input_2 Input_2 can_message_01.signal_01 can_message_01.signal_01	Input0.PXI1.Slot5.ai0 Input0.PXI1.Slot5.ai2 Input0.PXI1.Slot5.ai6 CAN1.0BC0.mBremse_1.BR1_Lampe_ABS CAN1.DBC0.mBremse_1.BR1_Lampe_ASR	653

- Vorstellung
- Anforderung
- Umsetzung
- Anwendung
- Ausblick



Anwendung

- Vorstellung
- Anforderung
- Umsetzung
- Anwendung
- Ausblick



Ausblick (JCI)

- Hardware-Erweiterung
 - Resistor Karte 40-295D
 - LINbus
 - BreakOut-Box & Failure injection
- Software-Erweiterung
 - Mathlab/Simulink Referenzmodelle
 - CCP/KWP2000 Erweiterung

Ausblick (A.M.S.)

- Fortführung des Projektes mit JCI
- Weitere Projekte mit CAN-Expertise von A.M.S.
- Bestehende Software-Komponenten ermöglichen effiziente Realisierung von kundenspezifischen Anwendungen.
- => Sprechen Sie uns an
 - Auf unserem Messestand
 - Über www.ams-soft.de

Ende

- Vielen Dank für Ihre Aufmerksamkeit
- Fragen?
- Feedback?

